Information Bottleneck

Rate Distortion Functions

Agenda

- Rate Distortion Theory
 - Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

Rate Distortion Theory Introduction

Goal: obtain compact clustering of the data with minimal expected distortion

 Distortion measure is a part of the problem setup

• The clustering and its quality depend on the choice of the distortion measure

Rate Distortion Theory

 Obtain compact clustering of the data with minimal expected distortion given fixed set of representatives T

Cover & Thomas

Rate Distortion Theory - Intuition

- T = X
 - zero distortion
 - not compact
 - I(T;X) = H(X)
 - |T| = 1- high distortion
 - very compact

I(T;X) = 0

Rate Distortion Theory – Cont.

- The quality of clustering is determined by
 - Complexity is measured by I(T; X) (a.k.a. Rate)

Distortion is measured by

$$Ed(X,T) = \sum_{i,j} p(x_i) p(t_j | x_i) d(x_i, t_j)$$

Rate Distortion Function

- Let $D\,$ be an upper bound constraint on the expected distortion

- Given the distortion constraint $D\,$ find the most compact model (with smallest complexity R)

$$R(D) \equiv \min_{\{p(t|x): Ed(X,T) \le D\}} I(T;X)$$

Rate Distortion Function Given

- Set of points X with prior p(x)
- Set of representatives T
- Distortion measure d(x, t)

• Find

- The most compact soft clustering p(t|x) of points of X that satisfies the distortion constraint D
- Rate Distortion Function

$$R(D) \equiv \min_{\{p(t|x): Ed(X,T) \le D\}} I(T;X)$$

Rate Distortion Function

Rate Distortion Function

Minimize

$$\mathcal{F}[p(t|x)] = I(T; X) + \beta Ed(X, T)$$

Subject to $\sum_{t} p(t|x) = 1 \ \forall x \in X$

The minimum is attained when

Solution - Analysis
$$\mathcal{F}[p(t|x)] = I(T; X) + \beta Ed(X, T)$$

Solution:

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$

The solution is implicit

$$p(t) = \sum_{x} p(x) p(t|x)$$

Known

Solution - Analysis

Solution:

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$

For a fixed t

When x is similar to t

Solution:

Fix x

 $\rightarrow \infty$

 $p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$

$\beta \to 0$

Solution - Analysis

Solution:

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$

Intermediate $\beta \implies$ soft clustering,

intermediate complexity

Agenda

- Motivation
- Information Theory Basic Definitions
- Rate Distortion Theory

 Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

Blahut – Arimoto Algorithm

Input:	p(x),	T,	eta
Randomly init	p(t)		

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta d(x,t)}$$
$$p(t) = \sum_{x} p(x) p(t|x)$$

Optimize convex function over convex set the minimum is global

Blahut-Arimoto Algorithm

Advantages:

- Obtains compact clustering of the data with minimal expected distortion
- Optimal clustering given fixed set of representatives

Blahut-Arimoto Algorithm

Drawbacks:

- Distortion measure is a part of the problem setup
 - Hard to obtain for some problems
 - Equivalent to determining relevant features
- Fixed set of representatives
- Slow convergence

Rate Distortion Theory – Additional Insights

Another problem would be to find optimal representatives given the clustering.

 Joint optimization of clustering and representatives doesn't have a unique solution. (like EM or K-means)

Agenda

- Motivation
- Information Theory Basic Definitions
- Rate Distortion Theory
 - Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
 - ilB
 - dIB
 - alB
- Application

Information Bottleneck

- Copes with the drawbacks of Rate Distortion approach
- Compress the data while preserving "important" (relevant) information
- It is often easier to define what information is important than to define a distortion measure.
- Replace the distortion upper bound constraint by a lower bound constraint over the relevant information

Tishby, Pereira & Bialek, 1999

Information Bottleneck-Example

Given:

Documents

Joint prior

Topics

Information Bottleneck-Example

Extreme case 1:

I(Word;Cluster)=0

Very Compact

Information Bottleneck-Example

Extreme case 2:

I(Word;Cluster)=max

Not Compact

Minimize I(Word; Cluster) & maximize I(Cluster; Topic)

Information Bottleneck

Relevance Compression Curve

Relevance Compression Function

• Let \widehat{D} be minimal allowed value of I(T; Y)

• Given relevant information constraint D Find the most compact model (with smallest \hat{R})

$$\widehat{R}(\widehat{D}) \equiv \min_{\{p(t|x): I(T;Y) \ge \widehat{D}\}} I(T;X)$$

Relevance Compression Function

$$\hat{R}(\hat{D}) \equiv \min_{\{p(t|x):I(T;Y) \ge \hat{D}\}} I(T;X)$$

$$\begin{array}{c} \text{Compression} \\ \text{Term} \end{array}$$

$$\mathcal{L}[p(t|x)] = I(T;X) - \beta I(T;Y)$$

$$\begin{array}{c} \text{Lagrange} \\ \text{Multiplier} \end{array}$$

$$\begin{array}{c} \text{Multiplier} \end{array}$$

Relevance Compression Curve

Relevance Compression Function

Minimize

$$\mathcal{L}[p(t|x)] = I(T; X) - \beta I(T; Y)$$

Subject to
$$\sum_{t} p(t|x) = 1 \ \forall x \in X$$

The minimum is attained when

$$\frac{\partial \mathcal{L}}{\partial p(t|x)} = 0$$

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta K L[p(y|x)||p(y|t)]}$$
Normalization

Solution - Analysis
$$\mathcal{L}[p(t|x)] = I(T; X) - \beta I(T; Y)$$

Solution:
$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta KL[p(y|x)||p(y|t)]}$$

The solution is implicit

$$\begin{cases} p(t) = \sum_{x} p(x) p(t|x) \\ p(y|t) = \frac{1}{p(t)} \sum_{x} p(x,y) p(t|x) \end{cases}$$
 Known

Solution - Analysis

Solution:
$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta KL[p(y|x)||p(y|t)]}$$

• KL distance emerges as effective distortion measure from IB principle

For a fixed t

When p(y|t) is similar to p(y|x)

The optimization is also over cluster representatives