## Rate Distortion Functions

## Agenda

- Rate Distortion Theory
- Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
- ilB
- dIB
- alB
- Application


# Rate Distortion Theory Introduction 

- Goal: obtain compact clustering of the data with minimal expected distortion
- Distortion measure is a part of the problem setup
- The clustering and its quality depend on the choice of the distortion measure


## Rate Distortion Theory



- Obtain compact clustering of the data with minimal expected distortion given fixed set of representatives $T$


## Rate Distortion Theory - Intuition



## Rate Distortion Theory - Cont.

- The quality of clustering is determined by
- Complexity is measured by $I(T ; X)$ (a.k.a. Rate)
- Distortion is measured by

$$
E d(X, T)=\sum_{i, j} p\left(x_{i}\right) p\left(t_{j} \mid x_{i}\right) d\left(x_{i}, t_{j}\right)
$$

## Rate Distortion Plane

## D - distortion constraint



## Rate Distortion Function

- Let $D$ be an upper bound constraint on the expected distortion

Higher values of $D$ mean more relaxed distortion constraint


Stronger compression levels are attainable

- Given the distortion constraint $D$ find the most compact model (with smallest complexity $R$ )

$$
R(D) \equiv \min _{\{p(t \mid x): E d(X, T) \leq D\}} I(T ; X)
$$

## Rate Distortion Function

- Given
- Set of points $X$ with prior $p(x)$
- Set of representatives $T$
- Distortion measure $d(x, t)$
- Find
- The most compact soft clustering $p(t \mid x)$ of points of $X$ that satisfies the distortion constraint $D$
- Rate Distortion Function

$$
R(D) \equiv \min _{\{p(t \mid x): E d(X, T)<D\}} I(T ; X)
$$

## Rate Distortion Function

$$
R(D) \equiv \min _{\{p(t \mid x): E d(X, T) \leq D\}} I(T ; X)
$$



## Minimize $\mathcal{F}[p(t \mid x)]$ !

## Rate Distortion Curve

$$
\mathcal{F}[p(t \mid x)]=I(T ; X)+\beta E d(X, T)
$$



## Rate Distortion Function

Minimize

$$
\mathcal{F}[p(t \mid x)]=I(T ; X)+\beta E d(X, T)
$$

Subject to $\sum_{t} p(t \mid x)=1 \forall x \in X$
The minimum is attained when $\frac{\partial \mathcal{F}}{\partial p(t \mid x)}=0$

$$
p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta d(x, t)}
$$

## Solution - Analysis

$$
\mathcal{F}[p(t \mid x)]=I(T ; X)+\beta E d(X, T)
$$

Solution: $\quad p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta d(x, t)}$

Known

The solution is implicit

$$
p(t)=\sum_{x} p(x) p(t \mid x)
$$

## Solution - Analysis

Solution: $\quad p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta d(x, t)}$

For a fixed $t$
When $x$ is similar to $t$

## Solution - Analysis

Solution: $\quad p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta d(x, t)}$
Fix t $\beta \rightarrow 0$

Fix $x$
$\beta \rightarrow \infty$

## Solution - Analysis

Solution:

$$
p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta d(x, t)}
$$

Intermediate $\beta \longmapsto$ soft clustering, intermediate complexity

Varying $\beta \longrightarrow$

## Agenda

- Motivation
- Information Theory - Basic Definitions
- Rate Distortion Theory
- Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
- ilB
- dIB
- alB
- Application


## Blahut - Arimoto Algorithm

## Input: <br> $$
p(x), T, \beta
$$

Randomly init $\quad p(t)$


Optimize convex function over convex set the minimum is global

## Blahut-Arimoto Algorithm

Advantages:

- Obtains compact clustering of the data with minimal expected distortion
- Optimal clustering given fixed set of representatives


## Blahut-Arimoto Algorithm

## Drawbacks:

- Distortion measure is a part of the problem setup
- Hard to obtain for some problems
- Equivalent to determining relevant features
- Fixed set of representatives
- Slow convergence


## Rate Distortion Theory Additional Insights

- Another problem would be to find optimal representatives given the clustering.

- Joint optimization of clustering and representatives doesn't have a unique solution. (like EM or K-means)


## Agenda

- Motivation
- Information Theory - Basic Definitions
- Rate Distortion Theory
- Blahut-Arimoto algorithm
- Information Bottleneck Principle
- IB algorithms
- ilB
- dIB
- alB
- Application


## Information Bottleneck

- Copes with the drawbacks of Rate Distortion approach
- Compress the data while preserving "important" (relevant) information
- It is often easier to define what information is important than to define a distortion measure.
- Replace the distortion upper bound constraint by a lower bound constraint over the relevant information


## Information Bottleneck-Example

## Given:



Documents
Joint prior
Topics

Information Bottleneck-Example Obtain:


Words
Partitioning
Topics

## Information Bottleneck-Example

Extreme case 1:


## Information Bottleneck-Example

 Extreme case 2:

Minimize I(Word; Cluster) \& maximize I(Cluster; Topic)

## Information Bottleneck



## Relevance Compression Curve



## Relevance Compression Function

- Let $\hat{D}$ be minimal allowed value of $I(T ; Y)$


## Smaller $\hat{D} \longrightarrow$ more relaxed relevant information constraint



Stronger compression levels are attainable

- Given relevant information constraint $\widehat{D}$ Find the most compact model (with smallest $\hat{R}$ )

$$
\widehat{R}(\widehat{D}) \equiv \min _{\{p(t \mid x): I(T ; Y) \geq \hat{D}\}} I(T ; X)
$$

## Relevance Compression Function

$$
\widehat{R}(\widehat{D}) \equiv \min _{\{p(t \mid x): I(T ; Y) \geq \hat{D}\}} I(T ; X)
$$



Minimize $\mathcal{L}[p(t \mid x)]$ !

## Relevance Compression Curve



## Relevance Compression Function

Minimize

$$
\mathcal{L}[p(t \mid x)]=I(T ; X)-\beta I(T ; Y)
$$

Subject to $\quad \sum_{t} p(t \mid x)=1 \forall x \in X$

## The minimum is attained when <br> $$
\frac{\partial \mathcal{L}}{\partial p(t \mid x)}=0
$$

$$
p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta K L[p(y \mid x) \| p(y \mid t)]}
$$

## Solution - Analysis

$$
\mathcal{L}[p(t \mid x)]=I(T ; X)-\beta I(T ; Y)
$$

Solution: $\quad p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta K L[p(y \mid x) \| p(y \mid t)]}$

## Known

The solution is implicit

$$
\left\{\begin{array}{l}
p(t)=\sum_{x} p(x) p(t \mid x) \\
p(y \mid t)=\frac{1}{p(t)} \sum_{x} p(x, y) p(t \mid x)
\end{array}\right.
$$

## Solution - Analysis

Solution: $p(t \mid x)=\frac{p(t)}{Z(x, \beta)} \mathrm{e}^{-\beta K L[p(y \mid x) \| p(y \mid t)]}$

- KL distance emerges as effective distortion measure from IB principle

For a fixed $t$
When $p(y \mid t)$ is similar to $p(y \mid x)$

The optimization is also over cluster representatives

