Rate Distortion Functions



Rate Distortion Theory

— Blahut-Arimoto algorithm
Information Bottleneck Principle
IB algorithms

— ilB

— dIB

— alB

Application



* Goal: obtain compact clustering of the
data with minimal expected distortion

* Distortion measure Is a part of the
problem setup

 The clustering and its quality depend
on the choice of the distortion measure



* Obtain compact clustering of the data
with minimal expected distortion given
fixed set of representatives T

Cover & Thomas



e '= X
— zero distortion
— not compact

I(T: X) = H(X)

T =1
— high distortion
—very compact

I(T; X)=0




 The quality of clustering is determined by

— Complexity is measured by | I(1"; X)
(a.k.a. Rate)

— Distortion is measured by

Ed(X,T) =) p(x;)p(tjla;)d(z;, t;)
1,)




D - distortion constraint
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« Let D be an upper bound constraint on the
expected distortion

Higher values of I mean more relaxed
distortion constraint

. !

Stronger compression levels are attainable

 Given the distortion constraint ) find the most
compact model (with smallest complexity 7))

R(D) = min I(T; X)
ip(tz) Bd(X,T)<D}




* Glven
— Set of points X with prior p(x)
— Set of representatives T’
— Distortion measure d(z,t)
* Find
— The most compact soft clustering p(t|z)of

points of X that satisfies the distortion
constraint D

« Rate Distortion Function

R(D) = min I(T; X)
{p(t|x): Ed(X,T)<D}




R(D) = min I(T; X)
{p(t|x): Ed(X,T)<D}
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Flp(tlx)] = I(T; X) + BEA(X,T)
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Minimize

Flp(tlx)] = I(T; X) + BEA(X,T)

Subjectto » p(tlz) =1Vze X
t

The minimum 1Is attained when

—)

oOF

op(tle)

p(t|x) ;Z(xjﬁ)

[ Normalization }




Flp(tlx)] = I(T; X) + BEA(X,T)

P(t)  _ Bd(x,t)
. _ t — o ;
Solution: p( \5'3) Z(x,ﬁ)

Known

The solution is implicit p(t) = > px)p(t|x)
xr



p(t) e—ﬁd(m,t)

Solution: tlxr) =
p(t|z) Z

(z, B)

For afixed ¢

When Zis similarto ¢




Solution:

Fix t

p(tlr) =

p(t) e—ﬁd(m,t)
Z(z, 3)

g —0

Fix X

f— oo
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Solution:

p(tlr) = Z

Intermediate ([ =) soft clustering,

Intermediate complexity

Varying (3 mm) -
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Input: p(z), T, S
Randomly init p(t)

? p(t|x) = Z]git)ﬁ)eﬁd(m’t)

p(t) = p(z)p(tx)

@ 4 ] @

Optimize convex function over convex set
m—) the minimum is global




Advantages:

* Obtains compact clustering of the data with
minimal expected distortion

« Optimal clustering given fixed set of
representatives



Drawbacks:

« Distortion measure is a part of the problem
setup
— Hard to obtain for some problems
— Equivalent to determining relevant features

* Fixed set of representatives

« Slow convergence



— Another problem would be to find optimal
representatives given the clustering.

— Joint optimization of clustering and
representatives doesn’t have a unique solution.
(like EM or K-means)
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 Copes with the drawbacks of Rate Distortion
approach

« Compress the data while preserving “important”
(relevant) information

* Itis often easier to define what information is
Important than to define a distortion measure.

 Replace the distortion upper bound constraint by a
lower bound constraint over the relevant information

Tishby, Pereira & Bialek, 1999



Documents

Given:

p(word, topic)

Joint prior




Obtain:
I(Word; Topic)

i

~Clustery)  rciuster: Topic)
> clusterai P>
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I(Word;Cluster)
Words Partitioning Topics



Extreme case 1:

\ I(Cluster;Topic)=0
< >

“clustery
L Not
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Extreme case 2:

@)

ustery

USter2 I(Cluster; Topic)=max
_wordsz clusterg <

Q)
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I(Word;Cluster)=max
Not Compact

Minimize I(Word; Cluster) & maximize I(Cluster; Topic)




P(X,Y)~I(X:Y)

X/\Y

T

[

p(t/x) ' piyl?)
words @ p(t) @ topics

minI(T;X) max I(T.Y)

[ Compactness Relevant }
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- Let D be minimal allowed value of I(7T;Y)

Smaller ) mm) more relaxed relevant
Information constraint

Stronger compression levels are attainable

-

» Given relevant information constraint 1)
Find the most compact model
(with smallest )

R(D) min I(T: X)

{p(t|z):I(T;Y)>D}




R(D) = min  I(T; X)
{p(t|z):1(TY)>D}
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Minimize | Llp(t|x)] = I(T; X) — BI(T;Y)

Subject to Zp(t|a:) =1VereX
t

The minimum iIs attained when OL — 0
Op(t|x)
P(t) —BKLIpylz)|p(ylt)]
t = e
— = 265

\

[ Normalization }




Llp(tlz)] = I(T; X) — BI(T;Y)

Solution: |p(t|z) = p(t) o BEL[p(ylx)[[p(y[t)]

Z(x, 3)

) Known
The solution Is p(t) = Zp(x)p(ﬂx)
implicit 1 pylt) = s Y p@ p(tla)




Solution: |p(t|z) = —L)_e~BKLIp(l) |p(ylt)]

Z(x,8)

« KL distance emerges as effective distortion measure
from IB principle

For afixed ¢

When p(y|t) is similar to p(y|z)

—

The optimization is also over cluster representatives




